Chris G. Koutures, MD, FAAP Pediatric and sports medicine specialist

Please Check Our New Brand and Website: www.ActiveKidMD.com

Comprehensive blend of general pediatric and sport medicine care with an individualized approach that enhances the health and knowledge of patients and their families

ACCEPTING NEW PATIENTS- CALL 714-974-2220 FOR AN APPOINTMENT

 

CLICK HERE FOR DR. KOUTURES GENERAL PEDIATRICS INFORMATION
Proud physician:
USA Volleyball Mens/Womens National Teams
CS Fullerton Intercollegiate Athletics
Chapman University Dance Department
Orange Lutheran High School

Co-Author of Acclaimed Textbook

Pediatric Sports Medicine: Essentials for Office Evaluation

Orange County Physician Of Excellence, 2015 and 2016

 

Filtering by Tag: concussion prevention

Best Football Helmet to Reduce Concussion Risk- The One that Fits!

Want to know the best type of football helmet to protect against concussions in high school football?

How about the helmet that fits properly?

Courtesy: ocsidelines.com

Courtesy: ocsidelines.com

The findings of a study in Sports Health identify "an important new potential intervention that may reduce concussion severity and even concussion incidence."

Using Athletic Trainers to evaluate helmet fit in high school players around the United States, the authors discovered that athletes with poorly fit helmets:

  • Averaged more symptoms with a concussion
  • Experienced symptoms lasting greater than a week 

The study also evaluated the type of internal helmet liner (air bladder, foam, or gel) and found that liner type was not associated with either number of symptoms or proportion of helmets with improper fit.

Neck muscle activation has been previously studied as a protective mechanism for reducing concussion, and a poorly fit helmet may limit this protective aspect:

  • If the helmet is not secured properly to the head, the neck muscles may not be able to reduce rotational forces transmitted from the helmet to the brain.
  • A loose helmet may also delay neck muscle contraction response to an impact 

Click here for more information on the role of neck muscle activation in reducing concussion

Particular challenges in maintaining proper fit include:

  • Varying fit with sweat or playing in wet conditions
  • Altering hair styles (including shaving of head after initial helmet fit)
  • Articles worn under helmet or liner (bandanas, hoods, google or glasses straps)
  • Potential leakage of air bladder resulting in insufficient inflation
  • Damage to internal liners from direct impact or improper care of helmet

Click here for an instructive PDF on a step-wise evaluation for proper helmet fit

Bottom line: Helmet fit is not just an early season exercise- players and team officials should ensure that helmets are checked weekly, including inflation of loose air bladders, to help reduce concussion severity and duration.

 

Dr. Koutures Writes on ConcussionConnection about Ivy League Eliminating In-Season Full Tackling

DocKoutures thoughts: Ivy League eliminating in-season tackling- would work in high schools?

New California Football Contact Limits Provide Unique Opportunity to Study Effect on Concussions

According to the findings of a study published in the May 4th online edition of JAMA Pediatrics, practice periods are a major source of concussion for the high school football player

While the actual rate of concussion is higher in game play, just over half of the reported concussions took place during practice times.

The authors suggest that strategies should be implemented to evaluate technique, limit player-to-player contact and overall head impact exposures, and reduce other higher risk practice situations.

While the jury is still out on what constitutes proper technique, the mandates of California Assembly Bill 2127 will afford a vital opportunity to further study the influence of practice time limitations on concussion rates in high school football players.

The bill prohibits high schools from conducting more than 2 full-contact practices per week during the preseason and regular season, and prohibits this full-contact portion of the practice from exceeding 90 minutes in a single day.

To clarify, "full-contact practice" means a practice where drills or live action is conducted that involves collisions at game speed, where players execute tackles and other activity that is typical of an actual tackle football game.

Based on the findings of the above JAMA Pediatrics study, the hypothesis is that these new restrictions should reduce concussion rates in practice simply by limiting exposure time and cumulative risk.

Now, one might ask, why would there possibly not be a reduction in concussion rates?

  • Is there a chance that limited practice times could lead to less comfort with tackling that could result in an actual higher game rate of concussion?
  • Could football programs feel pressure to get in as much contact as possible during the 2 allocated 90 minutes practice periods, possibly leading to more cumulative exposure during that time?

A multi-location review of concussion rates (game and practice) is essential to confirm the effects of California AB 2127. 

In such a study, I would also suggest that concussion rates be broken down by academic grade of player, and even take into account years of experience of tackle football.

I wonder if neophytes (namely incoming freshman) who have never previously played tackle football could be at higher risk from contact practice time limits.  Would the contact time restrictions have less influence on upperclassman who have played tackle football for a longer period of time?

All stakeholders will be eager to see if indeed there is a documented reduction in overall concussion rates, and if such a reduction is seen across all levels of high school football.







Can Vision Training Reduce Concussions?

While laudable efforts have been put into recognition, evaluation and treatment of a concussed athlete, those are all secondary prevention things done after the injury has already occurred.

Ideally, anything that can be done in the primary prevention world to stop concussions in the first place would be held in the highest of regard.

Helmets and other types of head gear unfortunately haven't served a sufficient protective role.

Now, there are efforts to look at the potential role of Visual Training to Reduce Concussion Incidence in Football, and pardon the pun, the results are eye-opening.

Over the course of 4 football seasons, researchers at a Division 1 Football institution used light board training,  strobe glasses, and tracking drills during pre-season summer camp and followed with weekly light board training during the season.

Findings indicated an association of a decreased incidence of concussion among football players during the competitive seasons where vision training was performed as part of the preseason training. The authors suggest that better field awareness gained from vision training may assist in preparatory awareness to avoid concussion-causing injuries.

The research team did caution  that this is an exploratory study and asked that future large scale clinical trials be performed to confirm the effects noted in this preliminary report.

What are my thoughts on this study?

  1. I recall a discussion with a colleague regarding apparent increased in both number and complexity of concussed young athletes compared with 5-10 years ago. There is little doubt that increased concussion awareness accounts for higher patients numbers, but what about the complexity?  One offered answer surrounded the extent of visual stimulation required of students today- from tablets to smartphones, from more screen time and power point presentations- visual overload can lead to lower threshold for  head  injury. While this hasn't been strictly proven, the findings of the above study could lend support to more effective visual processing and perhaps less overall eye strain may be protective against concussions.
  2. The study does compare head injury rates in the four years prior to the study and those found in the four years with the visual training intervention. There were coaching changes  and thus possibly differences in contact exposures between the before and after groups. Trying to compare the reported rates of concussion between this institution and other Division 1 school can be difficult- many programs are very guarded with injury rates, especially when it comes to concussion.  All reported concussion numbers (pre/post) seem somewhat low, but again, hard to make an exact statement due to lack of comparison data.
  3. If these results are validated, I have to wonder if teams will invest the time and energy to adopt such a program. Knee injury reduction programs have been  developed with solid supporting evidence, but use by teams lags sorely lags. Concussions are obviously a big deal, so I'd like to think that credible prevention programs would be readily put into place, but part of me has doubts from this past experience.
  4. Agree with the study authors that this is a preliminary study that merits further investigation with more schools and players of different ages.  Not ready to run out and ask schools to invest in the visual training equipment and protocols just yet, but quite eager to see if others can reproduce these results.

 

I think all of us in the sports medicine world are looking for evidence-based techniques to reduce/prevent concussions. Do the results of the above study seem reasonable to you?  Would your team or group be willing to put in the time investment if such a program proved able to limit concussions?