Chris G. Koutures, MD, FAAP Pediatric and sports medicine specialist

Please Check Our New Brand and Website: www.ActiveKidMD.com

Comprehensive blend of general pediatric and sport medicine care with an individualized approach that enhances the health and knowledge of patients and their families

ACCEPTING NEW PATIENTS- CALL 714-974-2220 FOR AN APPOINTMENT

 

CLICK HERE FOR DR. KOUTURES GENERAL PEDIATRICS INFORMATION
Proud physician:
USA Volleyball Mens/Womens National Teams
CS Fullerton Intercollegiate Athletics
Chapman University Dance Department
Orange Lutheran High School

Co-Author of Acclaimed Textbook

Pediatric Sports Medicine: Essentials for Office Evaluation

Orange County Physician Of Excellence, 2015 and 2016

 

Filtering by Tag: concussion in collegiate athletes

15-20 Minute Blocks of Activity: A Guideline for Post-Concussion Recovery

In the midst of the usual complexities of recovering from a sports-related concussion, I have found that one simple mantra of "re-start activity in 15-20 minutes blocks" can be an anxiety reducing guideline..

Looking to return to homework or other school-based activities?

Start with 15-20 minute blocks.

How much can I spend on my phone?

Start with 15-20 minute blocks.

As we discover that absolute rest and removal from usual duties might be counter-productive to recovery, the counter-concern over returning with too much activity, too quickly, or too soon is valid. 

Enter the 15-20 minute block recommendation.

When to start?

Usually within a few days after a concussion, and I will counsel patients that at a "good part" of the day where headaches or other symptoms are at a lower point, they should select one activity to start in a quiet room without other stimulation (loud music, bright outdoor light, texts on phone, etc). 

While most young people would immediately select their phone, the usual first choice is light reading from a book or magazine rather than a computer screen. 

Set a timer for 15-20 minutes, and once that period passes, stop all activity and take a break.

If successful, try another 15-20 minute block of similar activity again later in the day, and if that goes well, can increase to 20-30 minute blocks the next day.

Don't advise going past the "max" time recommendation. Better to finish "early" without symptoms than to muscle forward, develop a headache, and suffer a setback.

For those trying to decide when to return to school, have found that being able to complete 20-30 minute blocks of work 2-3 times a day is a minimum criteria for considering a partial (likely half-day) return to the classroom.

Once able to do at least 2 blocks of activity per day, can add a block of more "fun" which might include cell phone use, texting, appropriate surfing of internet, music, or even some relatively light video game play.

If unable to get through that initial 15-20 minute block of time due to headache or other symptoms showing up, don't despair.

Take the rest of that day off, and try the next day, again maximizing chances with success by ensuring a quiet distraction-free environment, good food and fluid intake, and hopefully after some restorative sleep.

If a few days of attempting the 15-20 minute activity blocks lead to more failure, then do not hesitate to contact your medical provider for more specific tips and further recommendations.

 

 

Reducing Injury: Focus on Exam Schedule as Much as Game Schedule?

The following blog post was originally written for a collegiate audience for ConcussionConnection.com, but the theme of exam stress increasing injury risk applies to all student-athletes. Please read through to the end for some additional thoughts on the link between academic burdens and injuries.

While most collegiate athletes and coaches dissect game schedules as a matter of habit, taking time to analyze exam schedules could pay off in reduced injury and illness risk. 

This news is probably not too surprising for many collegiate athletes who would readily acknowledge that any time of increased stress lead to a higher risk of injury.

Physical stress burdens are more readily acknowledged in pre-season training periods, often noted for two-a-day practices and passionate efforts to make the team or earn a starting position.

Often once taxing practices come to an end, many will take a collective deep breath and figure "the worst is behind me". While reading, writing papers, and taking exams is no walk in the park, those academic efforts seemingly should be less of a burden than heavier practice loads.

Well, perhaps those mental stressors present a fairly similar, if not higher risk to their physical counterparts.

Thanks to some inquisitive work at the University of Missouri, collegiate football players were 3.19 times more likely to have an injury restriction during weeks when they had high academic stress, such as midterms or finals, than during weeks where they had low academic stress. This increased injury risk during periods of academic stress was more noted in starting players, and the overall risk of academic stress was actually a bit higher than the injury restriction risk from physical stress during training camp (2.84 times higher risk compared to a low academic stress week).

These findings are from college football, where pre-season practice sessions take place before the academic year begins. Imagine the results for a winter sport like basketball or wrestling, where more intense pre-season sessions take place during the fall term academic sessions. Can anticipate a higher overall burden of physical and mental stress if mid-term exams (and papers) are due during heavier audition or training periods.

While it is virtually impossible to eliminate academic stressors or completely re-align practice or game schedules to better account for  mid-term and final exam periods, some creative suggestions could attempt to reduce the cumulative physical and mental burden for collegiate athletes:

  • Making reduction in overall practice times, reducing more demanding conditioning sessions, and focusing on maintenance of previous learned skills/techniques while holding off on introduction of new items could be rewarding. This might have to be done on an athlete-by-athlete basis depending on particular academic schedule demands. While this might appear to place a onerous burden on coaching and training staffs,  it is in line with the growing fascination with "big data" and more individualized training and recovery programs.
  • For athletes who are experiencing higher levels of physical or mental unease even before exam periods, recommend earlier intervention with mental health specialists and medical staff. As the study authors recommend, coaches should watch the attitudes of their athletes. If attitudes head south, be alert and ask for exam concerns among other stresses.
  • Take advantage of flexibility afforded by on-line learning or open exam periods to schedule exams or assignments to be due during possible bye weeks, weeks without travel, or a week with limited or reduced competition.
  • Work with winter or spring sport teams to give plenty of advance notice for audition or heavier practice periods to allow any possible rescheduling of mid-term exams.

I have also seen a relationship between academic stress leading to both new injury risk or more often prolonged healing times after injury especially in middle school and older patients.

When patients and families ask about adding new activities to their schedule, or how to pace a return to play after an injury, I will routinely ask about school demands (exams, papers, projects). Periods of heavier academic load are probably not the best time for increased or new training. Especially in cases of a concussion, I will often recommend waiting until academic demands are completed before allowing further return to high-risk sporting activity.

 

 

 

 

 

 

 

 

Dr. Koutures Quoted on Concussed College Athletes Choosing Early Retirement

Never easy for anyone to have to give up a sport and often the "athlete" sense of identity.

In a thoughtful and well-written article from Inside Higher Ed, Jake New weaves many perspectives on early retirement after concussion.

Highly recommend the read!

Can Vision Training Reduce Concussions?

While laudable efforts have been put into recognition, evaluation and treatment of a concussed athlete, those are all secondary prevention things done after the injury has already occurred.

Ideally, anything that can be done in the primary prevention world to stop concussions in the first place would be held in the highest of regard.

Helmets and other types of head gear unfortunately haven't served a sufficient protective role.

Now, there are efforts to look at the potential role of Visual Training to Reduce Concussion Incidence in Football, and pardon the pun, the results are eye-opening.

Over the course of 4 football seasons, researchers at a Division 1 Football institution used light board training,  strobe glasses, and tracking drills during pre-season summer camp and followed with weekly light board training during the season.

Findings indicated an association of a decreased incidence of concussion among football players during the competitive seasons where vision training was performed as part of the preseason training. The authors suggest that better field awareness gained from vision training may assist in preparatory awareness to avoid concussion-causing injuries.

The research team did caution  that this is an exploratory study and asked that future large scale clinical trials be performed to confirm the effects noted in this preliminary report.

What are my thoughts on this study?

  1. I recall a discussion with a colleague regarding apparent increased in both number and complexity of concussed young athletes compared with 5-10 years ago. There is little doubt that increased concussion awareness accounts for higher patients numbers, but what about the complexity?  One offered answer surrounded the extent of visual stimulation required of students today- from tablets to smartphones, from more screen time and power point presentations- visual overload can lead to lower threshold for  head  injury. While this hasn't been strictly proven, the findings of the above study could lend support to more effective visual processing and perhaps less overall eye strain may be protective against concussions.
  2. The study does compare head injury rates in the four years prior to the study and those found in the four years with the visual training intervention. There were coaching changes  and thus possibly differences in contact exposures between the before and after groups. Trying to compare the reported rates of concussion between this institution and other Division 1 school can be difficult- many programs are very guarded with injury rates, especially when it comes to concussion.  All reported concussion numbers (pre/post) seem somewhat low, but again, hard to make an exact statement due to lack of comparison data.
  3. If these results are validated, I have to wonder if teams will invest the time and energy to adopt such a program. Knee injury reduction programs have been  developed with solid supporting evidence, but use by teams lags sorely lags. Concussions are obviously a big deal, so I'd like to think that credible prevention programs would be readily put into place, but part of me has doubts from this past experience.
  4. Agree with the study authors that this is a preliminary study that merits further investigation with more schools and players of different ages.  Not ready to run out and ask schools to invest in the visual training equipment and protocols just yet, but quite eager to see if others can reproduce these results.

 

I think all of us in the sports medicine world are looking for evidence-based techniques to reduce/prevent concussions. Do the results of the above study seem reasonable to you?  Would your team or group be willing to put in the time investment if such a program proved able to limit concussions?

 

 

Why University Athletes May Hide Concussion Symptoms

I often encounter athletes who continue to practice or play in a game despite suffering concussion signs and symptoms and since hiding this information is not considered advisable and potentially quite dangerous,  have to admit that my initial response is along the lines of "what were you thinking?"

We as medical professionals have a pretty set initial response to a concussion- any suspicion of concussion, immediately remove from activity.

Pretty certain that athletes may view the initial response to concussion in a different light than us medical types.

As I find myself more often hearing of athletes hiding symptoms, my response still is a "what were you thinking?" but rather than asked in a frustrated or ready for a lecture tone, it is asked more in a sense of wanting to appreciate their mindset.

Is it lack of appreciation for the risks of concussion? How about denial? What about worry about losing a role on the team or not wanting to "bother" anyone?

Thus, it was interesting to see that Delaney and colleagues addressed this issues with their study Why University Athletes Choose Not to Reveal Their Concussion Symptoms During a Practice or Game.

The objectives of this paper were to  better understand why athletes who believe they have suffered a concussion while playing their sport “hide,” or decide not to volunteer, their symptoms to medical staff by identifying:

  • specific reasons why athletes who believed they had suffered a concussion during a game or practice decided not to seek attention from medical staff at that time, how often these reasons occurred, and how important these reasons were in the decision process
  • whether there were individual variables that may have made an athlete more likely to not volunteer his or her symptoms to a therapist/trainer or physician during a game or practice.

Findings of anonymous questionnaires that asked only about "self-diagnosed" concussions revealed that almost 20% of the 469 males and female athlete respondents believed they had suffered a sport-related concussion within the past 12 months. Of great interest was the fact that 78.3% of those athletes reporting a concussion did not seek medical attention either during the practice or game.

Why not?

Main reasons for "keeping quiet" were:

  • “Did not feel the concussion was serious/severe and felt could still continue to play with little danger" 
  • "Had similar symptoms of a concussion in the past and felt that there was little or no danger as had no problems with previous concussions or similar symptoms in the past"
  • "Fear that being diagnosed with a concussion would affect standing with the current team or future teams”
  • “Fear that being diagnosed with a concussion would result in negative of repercussions from the coach or coaching staff”
  • "Felt that would be removed from the game by the medical staff and did not wish this to happen”
  • “Fear that being diagnosed with a concussion would result in missing future games"

So, it appears that common human emotions- denial, minimalization and fear- are playing a big role.

All are understandable and none aren't surprising.

Not saying that they legitimize hiding symptoms or make it acceptable practice.

But rather they give unique insight into the psyche of university athletes and perhaps open particular in-roads to improving the culture of reporting concussion symptoms.

We need to recognize the fear of being removed, and attempt to address this fear by underscoring importance of early admission and treatment hopefully leading to a less complicated recovery and potentially an appropriately quicker return.

We need to have teams and coaches limit any negative responses to concussion diagnoses and provide essential support to any concussed or any injured athlete for that matter.

We need to acknowledge the competitive drive of our athletes and channel this into a competitive drive to protect their brains by offering such comprehensive diagnostic and management programs that athletes wouldn't think of missing out on getting such essential care.

 

 

 

 

 

Dr. Koutures New Video Presentation Page

Check out new webpage with Video Presentations: 

https://chris-koutures.squarespace.com/dr-koutures-videos/

Current Video Presentations  include:

More to come- suggestions for future Video Presentation ideas eagerly accepted for consideration.

Sleep, Screen Device Use, and Concussion Recovery

Each concussion deserves individualized recommendations that seek to strike the delicate balance between a child's need for maintaining social contacts and attempt to continue with school work with a desire to not overwhelm the healing brain and increase post-concussion symptoms. An absolute restriction on screen use might reduce possibility of certain symptoms such as difficulty falling or staying asleep, but can also lead to social isolation contributing to higher symptom reports of anxiety, sadness, and outright depression. 

How can we best strike an appropriate balance between screen use and need for adequate sleep?

Ask most parents if they have worries about sleep issues and amount of electronics/screen device use in their school aged children, and you'll probably get ready nods and smiles of affirmation. 

Ask some of my sports medicine colleagues about why we are seeing more complicated and prolonged post-concussion recoveries, and you'll hear some suggest that the multi-tasking and multiple platforms of communication utilized by smart phones and other screen devices are potential contributing factors.

So since increasing sleep issues and attempts to pry screen-based devices from the hands of kids are common concerns to parents and medical professionals, it should be no surprise that difficulties initiating or maintaining sleep and regulating electronic use are often major challenges in children who have suffered a concussion.

Came across two recent studies on the subject of screen use and sleep that I think shed some interesting light on how we might make recommendations for all children, but particularly in the immediate post-concussion population.

One study from Proceedings of the National Academy of Sciences of the United States of America suggests the use of portable light-emitting devices immediately before bedtime has potential biological effects that may perpetuate sleep deficiency and disrupt circadian rhythms, both of which can have adverse impacts on performance, health, and safety. Such device use can:

  •  increase alertness at bedtime, which may lead users to delay bedtime at home
  •  suppress levels of the sleep-promoting hormone melatonin,
  •  reduce the amount and delays the timing of REM sleep
  • and reduce alertness the following morning

While this study used healthy young adults (mean age around 25 years of age), the findings are intriguing enough to be extrapolated to younger patients. Given the frequency where recommended oral melatonin clearly helps with falling and staying asleep, having another pathway to support internal melatonin production can be essential in the recovery process.

An additional study from the journal Pediatrics examined 4th through 7th graders and assessed associations of different screens in sleep environments with sleep duration and perceived insufficient rest or sleep. Particular interest was placed on smartphones which can emit notifications during sleep periods, and relevant findings included:

  • Sleeping near a small screen, sleeping with a TV in the room, and more screen time were associated with shorter sleep durations.
  • Presence of a small screen, but not a TV, in the sleep environment and screen time were associated with perceived insufficient rest or sleep.

These findings found that small screens could have more adverse effects on sleep than television screens and thus caution against unrestricted screen access in children’s bedrooms for normal, healthy 4th through 7th graders, which again could be extrapolated to include concussed children.

Throwing this all together, a pragmatic approach to screen use after concussion that utilizes the findings of these studies may include the following clinical recommendations:

1) The preponderance of screen devices is an integral reality in the life of many school-aged children and significance of appropriate use cannot be underestimated in expediting post-concussion recovery.

2) Once appropriate, limit screen device time use initially to the middle of the day and not within one hour of any scheduled nap or evening sleep period.

3) All screen device use should be stopped at least one hour before bedtime,

4) Screen devices should be removed from the bedroom to reduce interruptions in sleep from notifications or temptation to check devices for updates during periods of awakening.

Once the child has recovered from the concussion, the child might find that continuing the above screen time recommendations may lead to continued enhanced amount and quality of sleep, which in itself may lead to an enhanced quality of life.

 

Concussionconnection.com: On-Campus Resources After Concussion

Thanks to colleagues from concussionconnection.com for publishing my blog post focusing on resources for disabled students on college and university campuses, particularly for student-athletes recovering from concussions.

Check out the blog post and a host of concussion-related resources at http://www.concussionconnection.com/knowing-resources/.



Addressing the Social Impact of Retiring from Sport due to Concussion

My wonderful colleagues at Concussion Connection have been offering their expert perspectives on retirement from sport due to concussion, and I am pleased to offer thoughts on the Social Impact of Retiring. Strongly recommend checking out the entire Concussion Connection site and praise them for the fine work they do in advocacy and education.

Return to Learn: Resources for Concussed Collegiate Student-Athlete

Have had the awesome fortune of meeting fellow Return to Learn after Concussion advocates/experts in Rachel and Katy from The Academic Agency and Lauren and Samantha from Concussion Connection. Been quite inspired by their passion for assisting athletes and families who suffer from sport-related concussion and also becoming more aware about particular nuances of specific return to learn strategies.  

Please click here to visit the Concussion Connection site and I thank them for this opportunity to review specific Return to Learn concerns for the Collegiate Student-Athlete.